Exponential Dynamical Localization for the Almost Mathieu Operator

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exponential Dynamical Localization for the Almost–mathieu Operator

We prove that the the exponential moments of the position operator stay bounded for the supercritical almost Mathieu operator with Diophantine frequency.

متن کامل

The Spectrum of the Almost Mathieu Operator

The notes are based on a series of six lectures, given during my stay at the CRC 701 in June/July 2008. The lecture series intended to give a survey of some of the results for the almost Mathieu operator that have been obtained since the early 1980’s. Specifically, the metalinsulator transition is discussed in detail, along with its relation to the ten Martini problem via duality and reducibility.

متن کامل

Almost Everything about the Almost Mathieu Operator I*

We review some aspects of the spectral theory of the Almost Mathieu operator (acting on`2 (Z)): where ; ; 2 R. We concentrate on the spectrum as a set, and describe the partial results obtained so far on the conjectures that, for irrational , it is a Cantor set and has Lebesgue measure j4 ? 2jjj.

متن کامل

Cantor Spectrum for the Almost Mathieu Operator. Corollaries of localization, reducibility and duality

In this paper we use results on reducibility, localization and duality for the Almost Mathieu operator, (Hb,φx)n = xn+1 + xn−1 + b cos (2πnω + φ) xn on l2(Z) and its associated eigenvalue equation to deduce that for b 6= 0,±2 and ω Diophantine the spectrum of the operator is a Cantor subset of the real line. This solves the so-called “Ten Martini Problem” for these values of b and ω. Moreover, ...

متن کامل

Metal - insulator transition for the almost Mathieu operator

We prove that for Diophantine ω and almost every θ, the almost Mathieu operator, (Hω,λ,θΨ)(n) = Ψ(n+ 1) + Ψ(n− 1) +λ cos 2π(ωn+ θ)Ψ(n), exhibits localization for λ > 2 and purely absolutely continuous spectrum for λ < 2. This completes the proof of (a correct version of) the Aubry-André conjecture.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in Mathematical Physics

سال: 2013

ISSN: 0010-3616,1432-0916

DOI: 10.1007/s00220-013-1743-9